
A User Study to Inform the Design of the Obsidian
Blockchain DSL

Celeste Barnaby
Wesleyan University

cbarnaby@wesleyan.edu

Michael Coblenz
Carnegie Mellon University
mcoblenz@cs.cmu.edu

Tyler Etzel
Cornell University
tje44@cornell.edu

Eliezer Kanal
Carnegie Mellon University

ekanal@cert.org

Joshua Sunshine
Carnegie Mellon University

sunshine@cs.cmu.edu

Brad Myers
Carnegie Mellon University

bam@cs.cmu.edu

Jonathan Aldrich
Carnegie Mellon University

jonathan.aldrich@cs.cmu.edu

Abstract
Blockchain platforms such as Ethereum and Hyperledger
facilitate transactions between parties that have not estab-
lished trust. Increased interest in these platforms has moti-
vated the design of programming languages such as Solidity,
which allow users to create blockchain programs. However,
there have been several recent instances where Solidity pro-
grams have contained bugs that have been exploited. The
security of blockchain programs is especially important given
that they commonly involve the exchange of money or other
objects with real-world value. We are currently developing
a blockchain-based programming language called Obsidian
with the goal of minimizing the risk of common security
vulnerabilities. We are designing this language in a human-
centered way, conducting exploratory user studies with a
natural programming approach to inform our design choices.
In this paper, we discuss our approach to the design of a user
study, as well as our preliminary findings.

Keywords blockchain programming, blockchain security,
programming language usability, user studies of program-
mers

1 Introduction
We are designing a blockchain-based programming language
called Obsidian [1] with the goal of minimizing the risk
of common security vulnerabilities in blockchain programs.
Blockchain programs written with current domain-specific
languages such as Solidity [2] often contain exploitable bugs.
In a particularly calamitous example, $50 million was stolen
from a contract called The DAO on the Ethereum blockchain
[3]. Obsidian contains core features – namely, first-class type-
state, linear resources, and path-dependent types – that will
allow users to write safe, effective programs. The target user

PLATEAU’17 Workshop on Evaluation and Usability of Programming Lan-
guages and Tools, October 23, 2017, Vancouver, CA

base of Obsidian is business professionals who will use the
language to write smart contracts, and its design is thus ori-
ented towards this domain. Obsidian programs consist of
contracts – similar to classes in Java – which contain fields,
states, and transactions – similar to methods.

1.1 Typestate
We (and others) have observed that programs in blockchain-
related domains are typically state-oriented [9]. Furthermore,
the DAO exploit stemmed from invoking a function in an
external contract while the calling contract was in an incon-
sistent state. In light of this, Obsidian makes state first-class:
an object in Obsidian has a mutable state that restricts which
transactions can be invoked on it [4].

contract LibraryPatron {

state NoCard {

transaction getCard () {

...

->HasCard

}

}

state HasCard {

transaction checkOutBook () {

...

}

}

}

Fig. 1. An example of states in Obsidian.

The states of a contract are defined as explicit blocks con-
taining transactions and fields, which can only be accessed if
the contract is in the corresponding state. In the example in
Fig. 1, a LibraryCard is always in one of two states, NoCard
or HasCard. The transaction checkOutBook can only be called
on an instance of LibraryCard if it is in the HasCard state; oth-
erwise, it will throw an exception. The -> operator indicates
a state transition.

PLATEAU’17, October 23, 2017, Vancouver, CA Barnaby et al.

1.2 Linear Resources
Blockchain programs may manage some kind of resource, like
a cryptocurrency, or a token indicating a more complicated
right (e.g. ownership of a financial option). Linear types [5]
are an existing approach that allow the compiler to enforce
a safe, clean programming model: resources cannot be used
more than once, but must be used before leaving the current
scope (thus ensuring that a resource is not lost accidentally).

contract Treasury {

// Money is a resource of Treasury

resource contract Money { ... }

transaction t1(Money m) {

spendMoney(m);

Bond b = exchangeForBonds(m);

// compiler error: m is used twice

}

transaction t2(Money m) {

// compiler error: m is never used

return;

}

}

Fig. 2. Linear resources in Obsidian

1.3 Path-Dependent Types
There are certain cases in blockchain programs in which a
programmer may want a resource to be dependent upon a
specific contract. For example, we may want each instance of
the Treasury contract in Fig. 2 to mint its own kind of money.
If money m1 from treasury t1 is used with a distinct treasury
t2, we would like the compiler to give an error message.
Obsidian supports this via the inclusion of path-dependent
types [6], wherein values can have type members. In the above
example, the type of Money is dependent upon a specific value
of Treasury; put another way, each treasury t has its own type
t.Money.

Path-dependent types assist in writing secure contracts:
without such types, every treasury would share the same
money type, and the programmer would have to manually
check that all money deposited into a treasury (for exam-
ple) is of the correct type. Incorrect or insufficient checks
could leave contracts vulnerable to exploitation. With path-
dependent types, all such checks are automatic: we can ensure
that only money that comes from a specific treasury is used
in transactions within that treasury.

1.4 Usability
It is crucial that real programmers are able to write correct
Obsidian code easily and efficiently. But even with seem-
ingly intuitive features, it is not always clear which design is

most effective for programmers. For instance, consider the
following simple Obsidian contract:

contract C {

state Start {

int x;

transaction a() returns int {

->S1{x1 = x};

return b(x1);

}

}

state S1 {

int x1;

transaction b(int y) returns int {

return y;

}

}

}

In transaction a, does it make sense to call b(x1) after
transitioning to state S1? Lexically the contract is still in the
Start state, so it is not immediately apparent which variables
and transactions are in scope. In a nontrivial program with
many different contracts, transactions, and states, a situation
like this could cause serious confusion. Failure to encode state
machines properly has been shown to be a significant source
of errors in smart-contract programming [7]. It is critical
that users are able to understand and use states easily and
effectively – if not, there is potential to create the same or
worse bugs, including security weaknesses, as in a language
without states.

Similar questions of usability arise with linear resources
and path-dependent types. Despite their apparent utility, linear
types have seen limited adoption in popular programming lan-
guages (though Rust uses a form of linearity for alias control
[10]), so it is not clear what is the best user-facing approach to
integrating these types into our design. As for path-dependent
types, an initial approach we have taken is to use nested con-
tracts to indicate a dependency relationship; however, nesting
has different implications in different languages, and we are
not certain that users will be able to recognize the presence
and utility of path dependency.

A related issue is whether users will want to use these fea-
tures if they are made available. Are these logical, sensible
solutions to real problems that programmers face? If people
do not understand or choose to use the language’s core fea-
tures, then any of the potential benefits of those features are
lost.

We are conducting a user study to investigate the usability
of state transitions and path-dependent types in Obsidian (a
study of the usability of linear resources will occur in future
work). This study is consistent with prior work that showed

A User Study to Inform the Design of the Obsidian Blockchain DSL PLATEAU’17, October 23, 2017, Vancouver, CA

the applicability of human-computer interaction techniques to
programming tools [8]. One technique we use is the natural
programming approach, in which we ask participants how
they would like to express their solutions to programming
problems [11]. The key research questions we address in the
study are as follows:

• RQ1: Are states and path-dependent types a natural
way of approaching the challenges that arise in blockchain
programming?

• RQ2: Which (if any) of our proposed ways of present-
ing states, state transitions, and path-dependent types
is most understandable and usable by programmers?

• RQ3: Are people able to effectively use and under-
stand path-dependent types as they are implemented in
Obsidian?

2 User Study Design
This study was exploratory rather than evaluative: its purpose
was to give us information about the usability of state tran-
sitions and path-dependent types so we can make informed
choices about the design of our language. We chose these
features as the focus of our study because they are both key
safety features that we expect users will use frequently. In
addition, they both have several distinct options for their syn-
tactic representation, and the results of the study will factor
into which design we choose to implement.

Participants were asked to complete two programming ex-
ercises, both of which were divided into multiple parts that
gradually introduced the participant to Obsidian and its main
features. Participants were instructed to think aloud through-
out the exercise, and were permitted to ask questions. We
designed the study so that both exercises could be completed
in approximately an hour and a half, in order to make it easier
for us to find willing participants as well as to limit participant
fatigue. We obtained IRB approval for the study; participants
gave informed consent and were paid $10/hour for their time.

2.1 Voter Registration Exercise
Participants were given a description of a voter registration
system for a hypothetical democratic nation. The system had
certain stipulations that made a state machine a logical means
of representing its required behaviors. For instance, the sys-
tem had specific conditions under which a citizen either be-
came registered to vote or remained unregistered.

The exercise was divided into five parts. In part one, partic-
ipants were asked to implement the system using pseudocode.
They were encouraged to invent any language features that
they wanted in order to solve this problem. Our goal was
to see how people naturally solve a problem in this domain:
what ideas do they have, and what assumptions do they make?

In part two, participants were given a state diagram that
modeled the voter registration system, and were asked to

modify their pseudocode to include the states and state tran-
sitions shown in the diagram. Again, we wanted to observe
people’s natural ideas about how to represent states and state
transitions in a program.

In part three, participants were given a two-page Obsidian
tutorial detailing the key components of the language. The
tutorial explained how state blocks work, but did not give any
information about how transitions should be written. Partici-
pants were then given an Obsidian program that implemented
the voter registration system, but was missing state transitions.
Participants were asked to add state transitions to the code,
inventing the syntax themselves.

In part four, participants were shown three options for the
syntax and functionality of state transitions, each accompa-
nied by a short code example. Participants were presented the
options in a random order; the order given here is arbitrary.

In option 1, shown in Fig. 3, users were allowed to use any
transaction available in the current dynamic state regardless
of the lexical context. For instance, it is legal to use the toS2

transaction (on line 5) inside the Start state, even though that
transaction is defined within S1. This is because there is a
transition to S1 in the previous line.

1 contract C {

2 state Start {

3 transaction t(int x) {

4 ->S1{x1 = x};

5 toS2 ();

6 }

7 }

8
9 state S1 {

10 int x1;

11
12 transaction toS2() {

13 ->S2{x2 = x1};

14 }

15 }

16
17 state S2 {

18 int x2;

19 }

20 }

Fig. 3. Option 1 for state transitions

In option 2, shown in Fig. 4, each state had a constructor
that was invoked when the contract transitioned to that state.
With this option, there could not be any code following a
state transition; thus, a transition had to be the final line of a
transaction.

In option 3, shown in Fig. 5, there were conditional if in

{state} blocks, which allowed the user to lexically nest states
so that another state’s transactions and fields could be used
directly.

PLATEAU’17, October 23, 2017, Vancouver, CA Barnaby et al.

1 contract C {

2 state Start {

3 transaction t(int x) {

4 ->S1(x)

5 }

6 }

7
8 state S1 {

9 int x1;

10 S1(int x) { // State constructor

11 x1 = x;

12 ->S2(x1);

13 }

14 }

15
16 state S2 {

17 int x2;

18 S2(int x) { // State constructor

19 x2 = x;

20 }

21 }

22 }

Fig. 4. Option 2 for state transitions

Participants were asked to complete a short Obsidian con-
tract once for each option. The contract was designed to be a
simple yet non-trivial use of state transitions that illustrated
the benefits and drawbacks of each option. The goal of this
part was to see whether participants would be able to imple-
ment the contract successfully with each option, as well as to
gather feedback about which option they preferred and why.

1 contract C {

2 state Start {

3 transaction t(int x) {

4 ->S1({x1 = x})

5 if in S1 {

6 ->S2({x2 = x1})

7 }

8 if in S2 {

9 ...

10 }

11 }

12 }

13
14 state S1 {

15 int x1;

16 }

17
18 state S2 {

19 int x2;

20 }

21 }

Fig. 5. Option 3 for state transitions

In part five, participants were asked to pick one of the
three options for state transitions and use it to complete the
Obsidian program from part three. They were then asked to
explain their reasoning and elaborate on if there was anything
confusing about any of the options.

2.2 Lottery Ticket Exercise
Participants were offered a description of a program that
allowed users to create and participate in lotteries. The criteria
for these lotteries was listed as follows:

• A lottery has a secret winning number between 0 and
100.

• Anyone can purchase a lottery ticket for a set amount of
money. A lottery ticket also has a number (picked by the
buyer) between 0 and 100. If the lottery ticket’s number
is equal to the lottery’s number, that is a winning ticket.

• The buyer of a ticket can check whether a ticket is the
winning ticket and redeem a winning lottery ticket for a
set amount of money. The buyer of a ticket can redeem
the ticket at any point after they buy it.

• It is only possible to redeem a lottery ticket from the
lottery where the ticket was putchased. For instance,
if you buy a lottery ticket from lottery1, you cannot
redeem your ticket from lottery2, even if that ticket’s
number matches the winning number of lottery2.

The exercise was divided into two parts. Part one mir-
rored the voter registration exercise in that participants were
asked to implement the program using pseudocode. Again,
we wanted to see how people naturally go about solving this
problem. Would using path-dependent types – or some feature
similar to that – occur to anyone? In the most-recently revised
version of this exercise, participants were given the following
instructions:

Design, using pseudocode, a program to
handle this lottery system. Do not worry about
writing code that resembles any particular lan-
guage, and feel free to make up any language
features you may want. We want to see the kind
of code you would want to be able to write. The
goal here is to see how people naturally go about
solving a problem like this.

It is critical to the system that a lottery ticket
can be redeemed only from the lottery where
it was purchased. You can assume that creator
and players of the lottery have accounts of some
sort from which money can be withdrawn and
deposited.

The instructions were worded carefully to motivate the
use of path-dependent types, without fully expounding this
feature or positioning it as the only way to implement the
program.

A User Study to Inform the Design of the Obsidian Blockchain DSL PLATEAU’17, October 23, 2017, Vancouver, CA

In part two, participants were given an explanation of path-
dependent types and offered an Obsidian contract that im-
plemented the lottery program, but had two transactions left
unwritten. Participants were asked to write those transactions.
We wanted to observe whether people were able to understand
path-dependent types and write correct code using them after
only a brief introduction.

3 Discussion of Study Design
One challenge in designing the user study was ensuring that
the programming exercises had an appropriate level of diffi-
culty. The scenarios had to be simple enough that participants
could comprehend and implement them in the little time they
had, but complex enough that implementing them was a non-
trivial problem that actually motivated the use of Obsidian’s
features. Several initial studies revealed that our exercises
were too complicated, and participants took much longer to
read and understand the instructions than we had anticipated.
Additionally, there were parts of the exercises that people
were continually confused about, which made it difficult to
assess their ability to use the language.

As we revised the programming exercises, we trended to-
wards simplifying and condensing. For instance, the state
diagram in the voter registration exercise originally had six
states and five transitions, but was modified to have three
states and three transitions; the tutorial was cut from three
pages to one and a half; and two parts were removed from the
lottery ticket exercise. We also made sure that each exercise
targeted exactly one feature: the voter registration exercise
was focused only on state transitions, the lottery ticket exer-
cise on path-dependent types.

We found that simplifying the exercises allowed us to col-
lect better data. Participants who completed the simplified
exercises spoke their thoughts aloud more consistently and
stated their preferences and opinions more confidently. They
were able come up with better and more interesting solutions
to the problems and write Obsidian code more effectively.
But simplifying our programming exercises also created cer-
tain limitations. Since the exercises were short and not very
complex, participants’ opinions may have been based only
on a cursory understanding of the language. There may be an
option for state transitions, for instance, whose utility only
becomes apparent in a large, complicated contract. Testing
these issues is left for future work.

4 Preliminary Results
We recruited a convenience sample of 12 participants. They
had varying levels of programming experience: some were
beginners, some experts. None had any knowledge about Ob-
sidian prior to completing the study. Nine of the participants
were undergraduates studying computer science; one was a
computer science Ph.D student, and two were working in a
business-related fields. Since this was an exploratory study,

we revised the study materials after each participant accord-
ing to what we learned about the materials or the language
design choices, and we asked participants to complete either
one or both exercises according to our experimental design
needs and the participants’ time constraints. Some partici-
pants only completed several parts of one exercise due to time
constraints.

4.1 Voter Registration Exercise
Seven participants were given the voter registration exercise.
When asked to write pseudocode for the voter registration
exercise, the general approach every participant took was to
create a globally accessible list that stored the registration
status (either registered or unregistered) of each citizen. While
this is a logical implementation of the problem, it was not
completely secure. For example, some participants created
separate lists for registered and unregistered citizens, meaning
that it would be possible for a citizen to erroneously appear
on both lists.

Six out of these seven participants were shown a state di-
agram and asked to modify their pseudocode to use states.
Of these six participants, two created explicit state blocks
with functions and variables inside, similar to the design of
Obsidian. The rest either maintained a global state variable
that changed based on the status of a citizen, gave each cit-
izen a state field that changed based on the citizen’s status
(e.g. with syntax such as "Citizen.state = CANVOTE()"), or
created empty, immutable states at the top of the program.
Several participants did not check whether a citizen was unreg-
istered before processing their application, meaning it would
be possible for an already registered citizen to register again –
something we expressly prohibited in the instructions.

When looking at and writing Obsidian code with states,
participants asked a lot of questions about what should be
allowed to happen during and after a state transition – that
is, what variables are and are not in scope, what the keyword
“this" refers to, and what transactions can be used. Several
participants asked if there was any way to check which state
the contract was in. One participant noted that he felt it should
never be allowed to call transitions from one state while lex-
ically in another, saying “I’m calling S1’s transaction from
code for Start.” Another participant said that she felt that
state transitions were like return statements, and after com-
pleting a transition there should not be any more code in that
transaction.

Three participants preferred the option that included state
constructors, maintaining that this option was easier to under-
stand. One preferred the option with if in {state} blocks
because it made it immediately apparent which state a con-
tract was in. The remaining three participants either did not
express a preference or did not complete this part of the exer-
cise.

PLATEAU’17, October 23, 2017, Vancouver, CA Barnaby et al.

4.2 Lottery Ticket Exercise
Six participants were given the lottery ticket exercise. When
asked to implement the program using pseudocode, four out
of the six defined a class for Lottery. The instructions speci-
fied that users of the program should be able to buy a ticket
from any lottery, but must only be able to redeem a winning
ticket from the lottery where they bought the ticket. Four
out of the six implemented a program without immediately
recognizing or forming a solution to this problem. When the
study facilitator pointed out the issue, the approach all four
participants took to resolve it was to give every lottery a fixed
ID. They then made sure that the function that redeems a
ticket must check that the ticket’s ID is equal to the lottery
ID.

This implementation left some room for exploitation. Two
participants made the lottery’s ID a randomly generated num-
ber, meaning it would be possible for two lotteries to have the
same ID. One participant had ticket owners input the lottery
ID themselves upon redeeming the ticket, meaning that if
a ticket owner somehow found the ID of a different lottery,
they could redeem their ticket from there. In each case, the
participant was able to understand the need to have lottery
tickets be tied to lotteries in some way, but four out of the six
participants had trouble executing this easily and effectively.

When offered an explanation of path-dependent types and
given an Obsidian program to complete, all participants were
able to write correct (albeit very simple) code. Five partic-
ipants were asked to identify the types of two lottery tick-
ets that had been purchased from different lotteries. Since
lotteries and lottery tickets had an established dependency
relationship, the correct answer was that they had different
types, even though they were both lottery tickets. Of these
five participants, two were able to offer this answer with ac-
curate reasoning. One vaguely said that it "seems" like they
should have different types, but was not sure since it was not
indicated explicitly in the code.

Three participants noted that the use of nested classes was
confusing or unclear – one said, "it’s usually bad practice to
use nested classes in Java."

5 Discussion
The results of the study addressed each of the research ques-
tions presented in the introduction.

• RQ1: Are states and path-dependent types a natural
way of approaching the challenges that arise in
blockchain programming?

The results of the pseudocode portions of both exercises
indicate that states and path-dependent types are not necessar-
ily the most obvious or natural ways of solving the problems
we presented. This makes sense given the backgrounds of
our participants: most of them noted that they were writing
pseudocode resembling the language they were most com-
fortable with, and thus may not have thought about inventing

new, unfamiliar language features. Moreover, the simplicity
of both exercises – the voter registration exercise in particu-
lar – may have made the need for these features somewhat
opaque. Still, we found it encouraging that two participants
independently invented special syntax denoting states, with
appropriate scoping for fields and transactions. Further, we
found in many cases that the approaches participants did take
to implementing the programs (reflecting approaches repre-
sentative of commonly-used languages) were insufficient or
unsafe, and that the weaknesses in their programs could have
been solved by using states or path-dependent types. This
result, coupled with our strong background evidence of the
utility of these features, motivates us to continue developing
these features in Obsidian, while further investigating the best
ways to design, present, and evaluate them.

• RQ2: Which (if any) of our proposed ways of present-
ing states, state transitions, and path-dependent types
is most understandable and usable by programmers?

The results of the voter registration exercise indicate that a
majority of participants prefer to specify code that executes
after state transitions using state constructors. The fact that
participants preferred this option after a short coding exercise
is not conclusive proof that this is the best option or the one
we should implement; however, it does indicate that Obsidian
users want it to be simple and easy to tell which variables
and transactions are in scope and to lexically determine the
current state of an object. Our results offer evidence that
encapsulating all the actions of a state within that state may
allow users to understand more easily which state an object is
currently in and which transactions and fields they are allowed
to use – thus enabling them to write better code.

We have already revised the language to move transactions
outside of states as a result of this study, and plan to offer
IDE-based information to users about which transactions and
fields are available in each state. For example, the editor will
show each field in the scope of every state in which that field
is available.

• RQ3: Are people able to effectively use and under-
stand path-dependent types as they are implemented in
Obsidian?

The responses we received from participants in the lottery
ticket exercise reveal that nesting contracts is likely not the
most understandable way to express a dependency relation-
ship. Three participants made comments about this, and those
who did not were not able to identify path-dependent types
correctly. An alternative to this approach would be to prohibit
nesting and instead use a keyword to denote this relation-
ship (e.g. "resource contract LotteryTicket depends on

Lottery").

6 Limitations
This study has a number of limitations:

A User Study to Inform the Design of the Obsidian Blockchain DSL PLATEAU’17, October 23, 2017, Vancouver, CA

• Because this was a pilot study, we recruited mostly com-
puter science students rather than people in the business
domain. Our convenience sample does not reflect the
intended user base of Obsidian, and we may have thus
missed out on the insights that business professionals
could offer, as well as the challenges in encouraging
such users to write safe programs.

• Participants were likely influenced by their prior pro-
gramming experience: people may have had a tendency
to prefer syntax that was familiar to them, even if it
was not the most effective means of implementing a
program.

• Participants were likely influenced by the descriptions
of the tasks as well. Because the tasks were designed
by the same people who are designing Obsidian, they
they may have been described in a way that aligns with
the DSL’s design more closely than realistic domain-
appropriate tasks would be.

7 Future Work
We are continuing to refine the language features and test
them with further user studies.

• We will target business students and business analysts
with limited programming experience, in order to col-
lect data from the intended user base of Obsidian.

• We will design programming exercises that further ad-
dress the usability of linear resources. One question of
interest, for example, is how to enforce linearity for
field accesses and state transitions: what should hap-
pen when attempting to access an owned field that has
already been consumed, and how can one transition
between states with different owned fields?

• We will design programming exercises that require par-
ticipants to read and write longer, more complicated
Obsidian contracts that actually compile. This will of-
fer us more evidence about whether people are able to
write correct Obsidian code. It will also allow partici-
pants to gain a deeper, less superficial understanding
of Obsidian’s features and thus offer more constructive
feedback about Obsidian’s usability.

• Finally, we plan to modify the Obsidian language im-
plementation using the results of these studies, and
evaluate the final design in a formal study testing its
effectiveness.

8 Conclusion
We designed and conducted an exploratory pilot study of
the usability of two of Obsidian’s major safety features. Pre-
liminary results from this study will inform both the design
choices we will make in the language as well as the direction
that future user studies will take. The natural programming
approach we took in the design of the user study allowed us
to obtain insightful, specific, and inventive responses from

participants, which may not have been possible with more
structured testing methods such as A/B testing. By using a
human-centered approach in the design of Obsidian, we aim
to offer a blockchain-based programming language that al-
lows users to write smart contracts more safely and easily
than currently available blockchain languages.

References
[1] M. Coblenz, “Obsidian: A Safer Blockchain Programming Language,"

in Proceedings of the 39th International Conference on Software Engi-
neering Companion, 2017.

[2] Ethereum Foundation, “Solidity," https://solidity.readthedocs.io/en/develop/.
Accessed Aug. 3, 2017.

[3] E. Gün Sirer, “Thoughts on the DAO hack," 2016. [Online]. Available:
http://hackingdistributed.com/2016/06/17/thoughts-on-the-dao-hack/

[4] J. Aldrich, J. Sunshine, D. Saini, Z. Sparks, “Typestate-Oriented Pro-
gramming," in Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and
applications, 2009, pp. 1015-1022.

[5] P. Wadler, “Linear Types Can Change the World," IFIP TC, vol. 2, pp.
347 - 359, 1990.

[6] N. Amin, T. Rompf, and M. Odersky. “Foundations of Path-Dependent
Types." in OOPSLA, 2014.

[7] K. Delmolino, M. Arnett, A. E. Kosba, A. Miller, and E. Shi, “Step by
step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab." IACR Cryptology ePrint Archive, vol. 2015, p. 460,
2015.

[8] B. Myers, A. Ko, T. LaToza, and Y. Yoon, “Programmers Are Users Too:
Human-Centered Methods for Improving Programming Tools," IEEE
Computer, Special issue on UI Design, 49, issue 7, July, 2016, pp. 44-52.

[9] Ethereum Foundation, “Common patterns,”
http://solidity.readthedocs.io/en/develop/common-patterns.html.
Accessed Jan. 4, 2017.

[10] N. D. Matsakis and F. S. Klock, II. 2014. “The Rust language." Ada
Lett. 34, 3 (October 2014), 103-104.

[11] B.A. Myers, J.F. Pane, A. Ko, “Natural Programming Languages and
Environments", Comm. ACM, vol. 47, no. 9, pp. 47-52, 2004.

	Abstract
	1 Introduction
	1.1 Typestate
	1.2 Linear Resources
	1.3 Path-Dependent Types
	1.4 Usability

	2 User Study Design
	2.1 Voter Registration Exercise
	2.2 Lottery Ticket Exercise

	3 Discussion of Study Design
	4 Preliminary Results
	4.1 Voter Registration Exercise
	4.2 Lottery Ticket Exercise

	5 Discussion
	6 Limitations
	7 Future Work
	8 Conclusion
	References

